Many-Objective Test Problems to Visually Examine the Behavior of Multiobjective Evolution in a Decision Space

نویسندگان

  • Hisao Ishibuchi
  • Yasuhiro Hitotsuyanagi
  • Noritaka Tsukamoto
  • Yusuke Nojima
چکیده

Many-objective optimization is a hot issue in the EMO (evolutionary multiobjective optimization) community. Since almost all solutions in the current population are non-dominated with each other in many-objective EMO algorithms, we may need a different fitness evaluation scheme from the case of two and three objectives. One difficulty in the design of many-objective EMO algorithms is that we cannot visually observe the behavior of multiobjective evolution in the objective space with four or more objectives. In this paper, we propose the use of many-objective test problems in a twoor three-dimensional decision space to visually examine the behavior of multiobjective evolution. Such a visual examination helps us to understand the characteristic features of EMO algorithms for many-objective optimization. Good understanding of existing EMO algorithms may facilitates their modification and the development of new EMO algorithms for many-objective optimization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiobjective Imperialist Competitive Evolutionary Algorithm for Solving Nonlinear Constrained Programming Problems

Nonlinear constrained programing problem (NCPP) has been arisen in diverse range of sciences such as portfolio, economic management etc.. In this paper, a multiobjective imperialist competitive evolutionary algorithm for solving NCPP is proposed. Firstly, we transform the NCPP into a biobjective optimization problem. Secondly, in order to improve the diversity of evolution country swarm, and he...

متن کامل

Design und Management komplexer technischer Prozesse und Systeme mit Methoden der Computational Intelligence Evolutionary Optimization of Dynamic Multiobjective Functions

Many real-world problems show both multiobjective as well as dynamic characteristics. In order to use multiobjective evolutionary optimization algorithms (MOEA) efficiently, a systematic analysis of the behavior of these algorithms in dynamic environments is necessary. Dynamic fitness functions can be classified into problems with moving Pareto fronts and Pareto sets having varying speed, shape...

متن کامل

Multi-objective Solution Approaches for Employee Shift Scheduling Problems in Service Sectors (RESEARCH NOTE)

Today, workforce scheduling programs are being implemented in many production and service centers. These sectors can provide better quality products and/or services to their customers, taking into account employees’ desires and preferences in order to increase sector productivity. In this study, an employee shift scheduling problem in the service sector is discussed. In the problem, the aim is ...

متن کامل

Evolutionary Optimization of Dynamic Multiobjective Functions

Many real-world problems show both multiobjective as well as dynamic characteristics. In order to use multiobjective evolutionary optimization algorithms (MOEA) efficiently, a systematic analysis of the behavior of these algorithms in dynamic environments is necessary. Dynamic fitness functions can be classified into problems with moving Pareto fronts and Pareto sets having varying speed, shape...

متن کامل

Multiobjective Adaptive Representation Evolutionary Algorithm (MAREA) - a new evolutionary algorithm for multiobjective optimization

Many algorithms for multiobjective optimization have been proposed in the last years. In the recent past a great importance have the MOEAs able to solve problems with more than two objectives and with a large number of decision vectors (space dimensions). The difficulties occur when problems with more than three objectives (higher dimensional problems) are considered. In this paper, a new algor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010